Affiliation:
1. Centre for Polymer from Renewable Recourses, SCUT, Guangzhou, PRC
2. Commonwealth Scientific and Industrial Research Organisation, Division of Materials Science and Engineering, Clayton South, Australia
Abstract
Abstract
Melt strength of polylactic acid (PLA) was improved through various modifications including grafting, crosslinking, chain extension, blending, plasticizing and nucleation. The results showed that melt strength was increased, to varying degrees, by crosslinking, chain extension and blending. In addition, melt strain (detected by velocity) was increased by chain extension, blending with elastomer, and plasticizing, but was decreased by crosslinking. The molecular weights, thermal properties and viscosity of the modified PLAs were also studied to investigate the causes of the observed variations in melt strength. Viscosity results generally corresponded with that of melt strength, but not with that of melt strain. With the exception of plasticizing and nucleation, the modifications had no significant effect on the thermal properties of PLA. The molecular weight (in particular the extremely large molecules representing by Mz) and the polydispersity of PLA were significantly increased after crosslinking and chain extension, which accounts for the observed increase in melt strength.
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献