Application of the PTT Model for Capillary Extrusion of Rubber Compounds

Author:

Choi S. H.12,Lyu M.-Y.3

Affiliation:

1. The Graduate School of Industry and Engineering, Seoul National University of Technology, Seoul, S. Korea

2. Hankook Tire Research Center, Daejeon, S. Korea

3. Department of Die & Mould Engineering, Seoul National University of Technology, Seoul, S. Korea

Abstract

Abstract Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors shown in profile extrusion is an extrudate swell and circulation flow at the corner of inside of die. Application of viscoelastic model to a capillary extrusion has been investigated in this study. Experiments and simulations have been performed using Fluidity Tester and commercial computational fluid dynamics (CFD) code, Polyflow respectively. Die swell of rubber compounds in a capillary die were predicted using a non-linear differential viscoelastic model, Phan-Thien and Tanner (PTT) model for various relaxation times and relaxation modes. As relaxation time and number of relaxation mode increase, die swell increases. The results of simulations were compared with the experiment. Pressure and velocity distributions, and circulation flows at the corner of reservoir have been analyzed through computer simulation. Two and three relaxation modes with large range of relaxation time examined in this study showed good agreement with experimental results of die swell and well represented circulation flow at the corner of reservoir in the capillary die.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3