Flow and Thermal History Effects on Morphology and Tensile Behavior of Poly(oxymethylene) Micro Injection Molded Parts

Author:

Kamal M. R.1,El Otmani R.2,Derdouri A.3,Chu J.-S.4

Affiliation:

1. Department of Chemical Engineering and CREPEC , McGill University, Montreal, QC , Canada

2. Université Chouaib Doukkali d'El Jadida , El Jadida , Morocco

3. National Research Council Canada , AST, Boucherville, QC , Canada

4. Micromolding Solutions Inc. , Brossard, QC , Canada

Abstract

Abstract The micro injection molding process is a rapidly growing area in plastics processing technology. In this process, the polymer is exposed to both high shear rates and large thermal gradients. In view of the versatility of the process, both commodity and engineering polymers have been used in micro injection molded products. In the present work, poly(oxymethylene) (POM), a partially crystalline engineering polymer, was employed to evaluate the relationships between processing conditions, on one hand, and the morphology and properties of the final part, on the other hand. An unsymmetrical mold cavity to make parts in the form of stepped plaques was used in the study. This resulted in substantial differences in morphology, crystallinity and shrinkage of the zones of different constant thicknesses in the micro parts. Depending on the molding conditions and the location on the micro-part, the microstructure can display up to five crystalline layers. Of particular interest, shish-kebab crystalline structures were observed within the skin of the step with the smallest thickness. Differential scanning calorimetry (DSC) tests are used to distinguish between the melting points of the shish and kebab components of this particular structure. The degree of crystallinity as determined by wide angle X-ray diffraction (WAXD) and shrinkage across the thickness were also found to be highest in the step with the smallest thickness.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3