Abstract
Abstract
A systematic approach for using a new digital laser dynamic caustic (DLDC) method to provide useful insights for blasting crack propagation is illustrated. Under blast loading conditions, the dynamic behavior of blasting crack propagation and stress distribution around the empty hole between two boreholes were investigated. The results show that the crack tips were gradually deflected towards the empty hole. Then, it was eventually perforated under the guiding role of empty holes. By the interaction between the blast stress waves and the empty hole, the reflected tensile waves were generated. Moreover, these waves changed the stress field and reduced the velocity of the crack tip with a greater diameter for the empty hole. It was also found that the size of the empty holes had a slight influence on the direction of the principal stress. The larger the size of the empty hole was, the smaller was the speed of the crack propagation. In general, the crack propagation velocity of the circular empty hole was the highest, followed by that of the square hole and the notched circular hole. As the blast crack extended to the vicinity of the empty hole, the stress intensity factor of the crack tip started to show an upward trend again.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference29 articles.
1. Theoretical and experimental study on empty hole effect in tunnel cut blasting;Metal Mine,2007
2. An introduction to dynamic photoelasticity;Experimental Mechanics,1980
3. Explosion generated fractures in rock and rock-like materials;Engineering Fracture Mechanics,1990
4. Model study of the guide hole effect on the smooth blasting;Journal Japan Explosives Society,1982
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献