Production- and microstructure-based fatigue assessment of metallic AISI 304/430 multilayer materials produced by hot pack rolling

Author:

Schmiedt Anke1,Luecker Lukas1,Kolesnikov Alexander G.2,Plokhikh Andrew2,Walther Frank1

Affiliation:

1. Dortmund , Germany

2. Moscow , Russia

Abstract

Abstract Metallic multilayer materials consisting of hundreds or thousands of layers offer a high potential for broad applications in modern technology. A uniform and gradual thinning of layers can be realized by using alloys with different crystal structures in combination with the efficient and high-performance technology of hot pack rolling. However, investigations on fatigue properties, especially to evaluate the influence of the number of layers, are still missing. In the present study, the fatigue behavior of metallic multilayer materials consisting of austenitic and ferritic stainless steels AISI 304 and AISI 430 with 100 and 1400 layers are characterized by applying a time-efficient load increase procedure. Therefore, instrumented stepwise load increase tests were performed to define suitable loading parameters for a convenient comparison of fatigue properties in constant amplitude tests. A benefit of the complex production process leading to 1400 layers was verified concerning the investigated load level in the range of low cycle fatigue with a significant improvement by the factor of 3.5. The alternating current potential drop method for measurements of change in voltage was determined to be most suitable to detect microstructural changes at an early state of fatigue damage for multilayer materials. Microstructures as well as fractured surfaces were investigated using light and scanning electron microscopy to evaluate the results of the two technological manufacturing routes as well as the crack and failure behavior.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3