Effect of Al addition on microstructure and properties of an Fe-B-Al alloy

Author:

Ju Jiang1,Fu Hanguang1,Lei Yongping1

Affiliation:

1. Beijing , PR China

Abstract

Abstract The Fe-B-Al alloy containing 0 to 10.0 wt.-% Al was melted in a vacuum induction furnace. Effects of the aluminum addition on the microstructure and properties of Fe-B-Al alloys were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), hardness testing and MMG-500 type pin-on-disk high temperature vacuum wear testing. The results showed that the as-casted microstructure of the aluminum-free Fe-B alloy consisted of α-Fe, Fe2(B,C), and Fe23(B,C)6 type borocarbides. However, the as-casted microstructure of the Fe-B-Al alloy consists of a Fe3Al type intermetallic compound when the aluminum content is more than 6.0 wt.-%. Compared with the aluminum-free Fe-B alloy, parts of the borocarbide networks are broken, and the fracture tendency became more obvious with the increase of the aluminum content. Boron is mainly distributed over the borocarbide. Aluminum is mainly distributed over the matrix and Fe3Al type intermetallic compound. Compared with the aluminum-free Fe-B alloy, the addition of a small amount of aluminum reduces slightly the hardness. The hardness gradually increased with the further increasing of the aluminum content. The hardness reached 48.1 HRC when aluminum content was 10.0 wt.-%. The high temperature wear resistance of Fe-B-Al alloy gradually increased with the increase of the aluminum content. When the aluminum content reached 10.0 wt.-%, the high temperature wear resistance of the alloy was the best.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3