Abstract
Abstract
Micro-magnetic testing methods are qualified for non-destructive quantification of hardness, hardness depth and residual stresses. Among others they are applied for detection of grinding burn in gear wheels, but an application for wear condition monitoring has not yet been published. In this paper, results of initial research of determination of wear condition in gear wheels by application of micro-magnetic testing systems are presented. For comparison of different wear conditions, gears were loaded for increasing numbers of cycles in a test rig based on FVA information sheet 54/7 and DIN ISO 14635 part 1. Operating conditions were altered by usage of different lubricants. Afterwards, wear conditions were determined by conventional techniques, i. e., measuring change in profile and loss of material. Four measurement principles were evaluated for change in micro-magnetic properties determination, magnetic Barkhausen noise analysis, permeability and eddy-current measurements, as well as harmonic analysis of tangential field strength. A general suitability of micro-magnetic testing approach for characterization of wear condition of gear wheels could be demonstrated by comparison of micro-magnetic properties with common wear indicators. Micro-magnetic properties were not solely influenced by wear condition, as the selected oil, and hence the tribochemical conditions in contact also showed a significant effect on measured values. Therefore, further survey is required for direct correlation of micro-magnetic properties with (micro-)structural material changes.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference13 articles.
1. Non-destructive measurement of stress in ferromagnetic steels using harmonic analysis of induced voltage;NDT International,1987
2. Use of the fractal nature of spatial and temporal response behavior for materials damage characterization,2008
3. Magnetic characterisation of duplex stainless steel;Physica B,2006
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献