Effect of processing conditions on the structure, electrical and mechanical properties of melt mixed high density polyethylene/multi-walled CNT composites in compression molding

Author:

Xiang Dong1,Guo Jiadong1,Kumar Amit2,Chen Biqiong3,Harkin-Jones Eileen4

Affiliation:

1. Chengdu , China

2. Belfast

3. Sheffield

4. Ulster , UK

Abstract

Abstract Processing conditions can significantly influence the structure and properties of polymer nanocomposites. In the present study, melt mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via twin-screw extrusion and then compression molded (CM). The effect of heating temperature, pressing time and cooling rate on the structure, electrical and mechanical properties of the CM nanocomposites was systematically investigated. Volume resistivity tests indicate that the nanocomposite with 2 wt.-% MWCNTs, which is in the region of the electrical percolation threshold, is very sensitive to the CM parameters such that heating temperature > pressing time > cooling rate. Generally, the resistivity of nanocomposites decreases with increasing heating temperature and pressing time. Interestingly, the electrical resistivity of the rapidly cooled nanocomposite with 2 wt.-% MWCNTs is about 2 orders lower than that of the slowly cooled nanocomposite which is attributed to the lower crystallinity and smaller crystallites presenting less of an obstacle to the formation of conductive pathways. The tensile properties of the nanocomposite with 2 wt.-% MWCNTs are also influenced by the compression molding parameters to some extent, while those of the nanocomposites with higher MWCNT loading are insensitive to the changes in processing conditions. The modulus of the nanocomposites increases by about 25 to 50 % and 110 to 130 %, respectively, with the incorporation of 2 and 4 wt.-% MWCNTs, which agrees well with the theoretical values predicted from Halpin-Tsai and Mori-Tanaka models. This work has important implications for both process control and the tailoring of electrical and mechanical properties in the commercial manufacture of conductive HDPE/MWCNT nanocomposites.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3