Increased load bearing capacity of mechanically joined FRP/metal joints using a pin structured auxiliary joining element

Author:

Heyser Per1,Sartisson Vadim1,Meschut Gerson1,Droß Marcel2,Dröder Klaus2

Affiliation:

1. Paderborn

2. Braunschweig , Deutschland

Abstract

Abstract Due to their excellent mechanical properties, fiber-reinforced plastics are increasingly being used in technical lightweight products. The multi-material design of fiber-reinforced plastic and metal leads to great lightweight constructions because the potential of the materials can be efficiently used for the specific field of application. This restricts conventional thermal joining technologies and shows the demand for cost-effective and efficient mechanical and adhesive joining technologies. This paper depicts the development of a new type of auxiliary joining element with integrated pin structures whose purpose is to increase the load-bearing capacity of mechanically joined fiber-reinforced plastic/metal combinations. In addition, the hole area of the fiber-reinforced plastic can be relieved in this way by transferring the operating loads into the laminate via the pin structures. In addition to experimental studies of the application methodology, the quasi-static and dynamic load-bearing capacity will be investigated. This paper presents detailed information about the development of the new auxiliary joining element and the characteristics of the joints, including corrosion effects generated by a corrosion camber.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference14 articles.

1. Challenges in composites;Aircraft Technology,2012

2. Testing concept for bonded steel/CFRP structures, Adhesion;Adhesives and Sealants,2015

3. Konstruieren mit Faser-Kunststoff-Verbunden

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3