Influence factors of pop-in in the nanoindentation micromechanical property measurement of gas-bearing shale

Author:

Wang Ligeng1,Zhang Yuanzhong1,Wu Wensheng1

Affiliation:

1. Bejing , P. R. China

Abstract

Abstract Studying the micromechanical properties of gas-bearing shale is very important for understanding it. In the nanoindentation measurement of gas-bearing shale, the load-displacement curve often shows pop-in at the loading stage, namely the change of load is small but the change of penetration depth is large. Pop-in can introduce a large error in the calculation of the mechanical parameter. To investigate the influence factors of pop-in, the maximum load, load rate and sample characteristics have been addressed. The results show that pop-in is related to cracks and pores in the shale. Due to the heterogeneity of shale, pop-in cannot be avoided, but can be reduced by choosing reliable load modes and test parameters. Pop-in can increase the maximum indentation depth and decrease the elastic modulus and hardness. The influence of pop-in on hardness is larger than on the elastic modulus. At a high load rate it is easy to induce pop-in. The influence of the load rate on pop-in is larger than that of the maximum load.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3