Analysis of the melt spreading and MCCI during the ex-vessel phase of a severe accident in WWER-1000

Author:

Rijova N.1,Saraeva V.1,Gantchev K.1,Bakalov I.2,Wolff H.2,Arndt S.2

Affiliation:

1. 1ENPRO Consult, 107 Cherni Vrah blvd. Sofia, 1407 Bulgaria

2. 2Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, 200 Kurfürstendamm, 10719 Berlin, Germany

Abstract

AbstractThe paper presents analysis results of melt spreading and core-concrete interactions in the containment of a WWER-1000 plant during the ex-vessel phase of a severe accident. The failure of the vessel takes place 8 h 35 min after the initiation of the accident. It has been assumed that the whole area of the containment floor is available for spreading, i.e. the door between the reactor cavity and the main part of the containment is not locked. The melt flow rate from the reactor pressure vessel was used as a boundary condition. The simulation of the melt spreading was performed with the LAVA code. The calculated spreading area varies from 60 to 100 m2 depending on the assumed values of the melt properties. The results from the LAVA calculations were used in parallel for COCOSYS and MELCOR calculations to study the core-concrete interactions. From the analyses it turned out: a larger spreading area leads to a faster cooling of the melt in the initial period of the accident, but in the long term the temperatures are the same. 60 h after start of the ex-vessel phase, the melt is not stabilised.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference15 articles.

1. Klein-Heßling, W.; Arndt, S.; Nowack, H.; Spengler, C.; Schwarz, S.; Eschricht, D.; Beck, S.: COCOSYS V2.4v5 User's Manual. GRS-P-3/1, Revision 29 July 05, 2018

2. Spengler, C.: LAVA 2000, A Computer Code for the Simulation of Melt Spreading in the Containment, Part A: User Manual. (v1.0) GRS-A-2967

3. Bakalov, I.: Molten Core-Concrete Interaction, Extended analyses of MCCI processes in WWER-1000/320 applying an increased concrete ablation temperature in COCOSYS CCI module. GRS, INT KoNuS Project meeting, GRS-ENPRO, Work Package 3 December 11–12, 2017

4. Meyer, L.; Ivanov, I.; Kisyoski, S.; Albrecht, G.; Popov, D.: Direct Containment Heating (DCH) in VVER 1000 Reactors, Physical Modelling and Experimental Results. Proceedings of Energy Forum, Varna, 2006

5. Sehgal, B.R.; Dinh, T. N.; Ravva, S. R.: Severe accident risk assessment and severe accident management, Kozlodouy-5 WWER-1000/V320 plant. Safety evaluation report, Sehgal Konsult, 2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3