Revision of a CHF correlation for PWR under low pressure conditions with only dimensionless parameters as independent variables

Author:

Pang B.1,Feng S.1,Yin Y.1

Affiliation:

1. 1College of Physics and Energy, Shenzhen University Nanhai Ave. 3688, Shenzhen P.R. China

Abstract

AbstractAccurate prediction of the critical heat flux (CHF) is one of the key tasks of PWR core design and safety assessment, for the maximal allowable heat flux in the reactor core is limited by CHF. Since CHF in rod bundle cannot be predicted analytically, up-to-date predictive approach is based on empirical correlations related to the local thermal-hydraulic conditions, geometry and power distribution. However, development of CHF correlation for PWR fuel assemblies under low pressure conditions (2–10 MPa) is constrained by limited amount of experimental data points, which builds up in statistics a typical problem of small sample amounts, but requiring simultaneously high prediction accuracy. In our previous study, stepwise regression method was applied to develop a dimensional, empirical CHF correlation for PWR under low pressure conditions, termed as the advanced low pressure CHF correlation (ALPC), which successfully solves the challenge of small sample problem. However, the ALPC correlation still uses dimensional independent variables with less physical meanings, which limits its physical interpretability. In the current study, stepwise regression method was used to develop a revised, dimensionless version of the ALPC CHF correlation. First, various dimensionless, two-phase thermal-hydraulic parameters that might influence CHF were selected as candidate independent variables. With stepwise regression, the form and coefficients of the revised CHF correlation were optimized in a dynamic manner. Compared to the current ALPC correlation, the revised version developed in this study possesses a similar simple form but a much higher prediction accuracy. Revision of the ALPC correlation demonstrates clearly the advantages of utilizing dimensionless parameters as independent variables in CHF correlation, which points out a new direction of developing rod-bundle CHF correlations for engineering purpose.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3