Influence of Melt Compounding on Blast Furnace Slag Filled PP Compounds: A Comparative Study

Author:

Mostafa A.1,Pacher G.1,Lucyshyn T.2,Holzer C.2,Krischey E.3,Flachberger H.3,Fritz B.4,Laske S.5

Affiliation:

1. Polymer Competence Center Leoben GmbH (PCCL) , Leoben , Austria

2. Chair of Polymer Processing , Montanuniversitaet Leoben, Leoben , Austria

3. Chair of Mineral Processing , Montanuniversitaet Leoben, Leoben , Austria

4. voestalpine Stahl GmbH , Linz , Austria

5. Research Center Pharmaceutical Engineering GmbH , TU Graz, Graz , Austria

Abstract

Abstract In the current study, an assessment of the melt-compounding approach upon the behavior of blast furnace slag (BFS) filled polypropylene (PP) is reported. Two melt-compounding technologies are compared in terms of thermodynamic considerations as well as final behavior of the produced compounds. For this comparison, three PP-BFS formulations are introduced, where non-treated BFS is melt-mixed with PP via (1) internal lab mixer (IM) and (2) co-rotating twin-screw compounder (TSC). PP-BFS compounds from both processes are formed into plates via compression molding, characterized and tested for rheological, thermal and mechanical behavior. Processing parameters were evaluated for both processes such as specific shear work, residence time and shear rates. In addition, the rheological, thermal and mechanical behavior of comparable compounds are evaluated. The calculated specific shear work values for IM and TSC are 0.15 and 0.1 kW · h · kg−1. Calculated residence time for TSC is 55 s. Regarding the rheological behavior, it was found that melt mixing via both technologies did not show major differences in complex viscosity or storage- and loss moduli values. DSC findings show that crystallization and melting temperatures of IM- and TSC formulations are comparable. Decreased strain values are noticed for TSC compounds, while tensile modulus is found to be independent of process variation.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3