Fabrication of Microstructures of Extreme Structural Heights by Reaction Injection Molding

Author:

Hagmann P.1,Ehrfeld W.12

Affiliation:

1. Kernforschungszentrum Karlsruhe, Karlsruhe, West Germany

2. Dr. W. Ehrfeld, Steag Mikrotechnik, Griesbach Str. 10, 7500 Karlsruhe 21

Abstract

Abstract For the fabrication of microstructures with minimum lateral dimensions in the micrometer range and structural heights of up to several hundred micrometers a new microfabrication technique has been developed by the Karlsruhe Nuclear Research Center. The so-called LIGA method is based on a combination of deep-etch X-ray-lithography, electroforming and plastic molding. High-quality micromold inserts can be prepared by deep-etch X-ray lithography and electroforming allowing an arbitrary choice of cross section of the microstructures. By optimization of the process parameters of the reaction injection molding process using casting resins on a methyl methacrylate base it has been shown that a yield of 100% can be achieved. For molding microstructures without any flaws, the mold material has to be degassed, the cavity of the mold must be evacuated and the shrinkage due to polymerization has to be compensated by applying a holding pressure. With an internal mold release agent which is a special salt of an organic acid, cycle times of about 12 min have been achieved in the micromolding process step which are very much shorter than the exposure and development times in the direct lithographic production of microstructures. Such plastic structures can represent the final product or, if microstructures are to be made of metal, they are used as templates in a subsequent electroforming process. Depending on the geometrical configuration of the microstructures, either a metallic gate plate or an electrically conducting plastic layer are used as the electrode for electroforming.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of micro gear by micro powder injection molding;Microsystem Technologies;2007-03-13

2. Polymer Nanoengineering for Biomedical Applications;Annals of Biomedical Engineering;2006-03-16

3. Microinjection Molding ‐ Principles and Challenges;Microengineering of Metals and Ceramics;2005-06-27

4. Accuracy and mechanical properties of multiparts produced in one mold in microinjection molding;Polymer Engineering & Science;2005

5. Micro molding of fluidic devices for biochemical applications;Microreaction Technology: Industrial Prospects;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3