Microstructure and properties of thick nanocomposite TiN/Si3N4 coatings on Vanadis 23 HS steel

Author:

Moskalewicz Tomasz1,Zimowski Sławomir2,Wendler Bogdan3,Progalskiy Ivan3,Czyrska-Filemonowicz Aleksandra1

Affiliation:

1. AGH University of Science and Technology , Faculty of Metals Engineering and Industrial Computer Science, Kraków , Poland

2. AGH University of Science and Technology , Faculty of Mechanical Engineering and Robotics, Kraków , Poland

3. Lodz University of Technology , Institute of Materials Science and Engineering, Łódź , Poland

Abstract

Abstract The microstructure and selected micro-mechanical properties of a 13.4 μm thick nanocomposite TiN/Si3N4 coating deposited onto Vanadis 23 HS steel by a new gas pulsed magnetron sputtering technique were investigated. Scanning and transmission electron microscopy were employed to investigate the detailed microstructure of the coating. It was found that the coating exhibited a fully nanocrystalline structure and was composed of two zones: the outer zone with columnar structure and the inner one with equiaxed, fine columnar structure. Both zones consisted mainly of the δ-TiN nanocrystallites with a small amount of α-Si3N4 and β-Si3N4. In order to increase coating adhesion to the substrate, a graded intermediate layer consisting of three different phases (pure Cr, CrN and Cr2N) was applied. The hardness of the as-deposited TiN/Si3N4 coating was equal to 48 GPa, whereas it was equal to 40 GPa after annealing. The coatings exhibited very good adhesion to the underlying steel substrate.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3