Affiliation:
1. Temasek Laboratories , National University of Singapore , Singapore
2. Data Storage Institute , Agency for Science, Technology and Research (A*STAR) , Singapore
Abstract
Abstract
A methodology to quickly prepare CoFe nanofilms with large magnetic permeability and resonance frequency from simple salt solutions is demonstrated. As the microwave properties of thin films are largely determined by their surface morphology and composition, CoFe film with unique morphology and composition is proposed based on theoretical analysis and subsequently electrodeposited with suitable parameters. This approach reveals that Fe
x
Co1
-
x
(0.3 < x < 0.5 in atomic ratio) films consisting of sub-30 nm spherical nanoparticles, even in the form of bigger aggregated-nanoparticles, usually show a low coercivity (≤4240 A · m−1), moderate magnetic anisotropy (2900–8580 A · m−1), and high magnetic moment (≥1.4 T), permeability (>200) as well as resonance frequency (>1 GHz). Further experimental analyses show root causes of the phenomena. This methodology also provides useful references to rapidly identify microwave properties of thin films from their surface morphologies and main electrodeposition parameters.
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献