Investigation of the Influence of Proximal Radiation on the Thermal Stresses and Lifetime of Metallic Radiant Tubes in Radiation-Dominated Industrial Furnaces*

Author:

Büschgens D.1,Karthik N. K.1,Schubert C.1,Schmitz N.1,Pfeifer H.1

Affiliation:

1. Department for Industrial Furnaces and Heat Engineering , RWTH Aachen University , Germany.

Abstract

Abstract The influence of surrounding (or proximal) radiation on radiant tubes inside a continuous hot-dip galvanizing line was investigated. The furnace chamber, the strip and the neighbouring tubes were considered as the surroundings. A coupled heat transfer model was developed and subsequently validated against experimental measurements. This model was used to calculate the radiation exchange between the tube and its surroundings, and to give the new temperature distribution on the tubes as its output. This result served as an input to an already validated FEM model, which was used to assess the creep behaviour and the corresponding stresses on the tube. Basis of the investigated setups were Alloy 602 p-type tubes operating under burner on/off firing. The results show an increase in creep deformation of the tube when the surroundings were taken into account. Highest creep deformations were observed for setups with a strip, even though these cases showed the lowest maximum tube temperatures. Furthermore, an opposing effect between creep deformation and stresses acting on the tube exists. This is supported by the fact that no definite pattern relating the creep and stresses of a tube was found. Local tube temperature gradients and transient cyclic loading due to burner on/off firing were observed to have a significant influence on the tube's service life.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering

Reference15 articles.

1. Operating Experience with Regard to New Double P Radiant Tube Technology in a Vertical Galvanizing Line,2006

2. Control of radiant tubes in an indirect-fired strip annealing furnace for improved efficiency,2013

3. Saving energy by modernizing the heating system, using modern self recuperative burners;Heat Processing,2010

4. Radiant Tube Burners,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3