Energy Resolved Residual Stress Analysis with Laboratory X-Ray Sources

Author:

Liehr A.1,Zinn W.1,Degener S.1,Scholtes B.11,Niendorf T.1,Genzel C.2

Affiliation:

1. Institute of Materials Engineering – Metallic Materials , University of Kassel , Germany

2. HZB Berlin , Germany

Abstract

Abstract It is well known that existing residual stress fields play an important role for strength and lifetime of components. Consequently there is a great interest in the availability of fast, reliable and possibly nondestructive methods for their determination. In this context, X-ray diffraction methods play an important role in technical practice as well as in scientific research. They are based on the determination of lattice strains from which residual stresses are determined applying Hooke's law with appropriate elastic constants. In this paper – after a short survey of the basic principles – characteristic features of energy resolved methods for laboratory applications compared with angle resolved methods are outlined. A corresponding measuring device is presented and characteristic examples are given to demonstrate the possibilities and limitations of the method.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3