Design and Validation of a Cable Extrusion Tip with Spiral Channels

Author:

Haller D.1,Gonnet J.-M.1,Lankes C.1

Affiliation:

1. Processing Center, Nexans Research Center, Nürnberg, Germany

Abstract

Abstract Traditional cable extrusion dies employ a side-fed flow distribution system. In this case, the flow is split into two streams, resulting in the formation of a weld line. The weld line runs as a radial line through the cross section of the cable coating and has the least favorable orientation when the cable coating is exposed to circumferential stresses. Therefore, a new cable extrusion tip based on the principle of spiral mandrel dies was developed to change the orientation of the weld line from radial, that takes place when side-fed mandrel dies are used, to circumferential, when melt distribution resulting from the layering of the leakage flow in spiral mandrel dies occurs. The circumferential orientation of the weld line reduces the exposure of the weld line to circumferential stresses and thus improves the mechanical properties of the cable coating. This paper first outlines the design strategy for the new cable extrusion tip and further presents experimental results. The design strategy is based on two-dimensional flow networks. The network model is applied to calculate the flow channel geometry for a wanted distribution of the flow. Further, it should generate a better understanding of the correlation between the flow, pressure drop, and the flow channel geometry to facilitate the design of the tip. Three dimensional FEM simulations were used in this work to validate the flow network model in terms of pressure drop and velocity profile at the exit of the tip. The results of the calculations with the network model show good accordance with three dimensional FEM-simulations. For the experimental part a tensile test was conducted to compare the tensile strength in circumferential direction of a cable extruded with the new tip with a cable extruded with a conventional cable extrusion tip. The measurements showed an increase of the tensile strength in circumferential direction of 10% to 15% for the cable extruded with the new tip compared to the tensile strength at the location of the weld line in the cable extruded with the conventional tip.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3