The Development of a Multi-Axis Magnetic Roller for Micro-Structure Transfer Embossing Processing Technology

Author:

Weng Y.-J.12,Huang J.-C.3,Lin H.-S.1

Affiliation:

1. Department of Mechanical and Energy Engineering , National Chiayi University, Chiayi City , ROC

2. Center of Energy Research and Sensor Technology , National Chiayi University, Chiayi City , ROC

3. Department of Mechanical Engineering , Tungnan University, New Taipei City , ROC

Abstract

Abstract This study proposed a processing technology using a multi-axis magnetic roller for micro-structure transfer embossing development. First, dynamics deduction and ANSYS numerical simulation were used to explore the impact of the upper axis on the medium and lower axis, under the conditions of different parameters. This study also-developed and established a multi-axis magnetic roller micro-structure transfer embossing system for analysis, simulation, and discussion, on the technological characteristics of the multi-axis auxiliary roller embossing replication and transfer embossing processing technology. By taking advantage of the feature of the uniform contact pressing of the magnetic roller during the roller embossing process, coupled with the coordinated force application of the three axis rollers, this study attempted to achieve complete, uniform transfer embossing and replication of the micro-structure during the roller embossing process. The results of multi-axis transfer embossing process simulation and experimental analysis showed that multi-axis transfer embossing technology can transfer and replicate a micro-structure on the roller in a more uniform and more effective manner. The proposed multi-axis magnetic roller micro-structure transfer embossing system can smoothly replicate a micro-structure by roller embossing with good replication moldability and optical performance characteristics, in order to sufficiently achieve uniform embossing results

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3