Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands

Author:

Carlson M. R.1

Affiliation:

1. Reservoir Engineering Manager – RPS Energy, Suite 1400, 800 Fifth Avenue SW, Calgary, Alberta, T2P 3T6, Canada. E-mail:

Abstract

Abstract Most people will have been exposed to some aspect of the debate about the Athabasca Oil Sands in North-Eastern Alberta and the significant role that the oil sands are expected to play in supplying conventional fossil fuels. Part of the bitumen is recovered from mines and part is recovered from in situ projects utilizing the Steam Assisted Gravity Drainage Process (SAGD). SAGD utilizes a considerable amount of steam, that is injected into geological formations. Hot water, bitumen and some vapour are recovered from the production wells. With significant steam generation, transmission and injection, there is the very real possibility of condensation induced water hammers. There have been a number of catastrophic failures to date. The intent of the paper is to provide interesting background information on the in situ oil sands industry. More importantly, to show some interesting and broader applications of thermalhydraulics developed in the nuclear industry. The expertise developed may have potential markets, with some adaptation, to the oil sands industry. Finally, there has been some discussion about using nuclear power for steam generation in the oil sands.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference19 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow restrictions and blockages in operations;Handbook of Multiphase Flow Assurance;2019

2. Investigations on the stochastic nature of condensation induced water hammer;International Journal of Multiphase Flow;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3