Numerically modeling spring back and spring go amounts and bending deformations of Cr-Mo alloyed sheet material

Author:

Özdemir Mustafa1,Dilipak Hakan,Bostan Bülent

Affiliation:

1. Machine and Metal Technology Department Vocational High School Esentepe Campus Bozok University, 66200 Yozgat , Turkey

Abstract

Abstract In the study conducted for this contribution, sheet material 4 mm thick, non-heat treated (II), normalized (NH) and tempering heat treatment implemented (TH), were formed at a bending angle of 90°. As a result of the forming process, the effects of the R2, R3, R4, R5, and R6 mm punch tip radii on spring back and spring go values were investigated. The bending operations were carried out by waiting for the punch in the material bending zone for 30 sec and then lifting. The samples were extracted from the middle deformation zone of the II, NH and TH applied sheet material, to which the bending process was applied, following which their ferrite phase, pearlite and martensite structures were microstructurally analyzed. A Minitab analysis program was used to investigate the effect of the bending parameters on the sheet material’s spring-back and spring-go behavior. Moreover, the effects of bending parameters were investigated by creating numerical and mathematical models. Thus, it was determined that spring-go behavior occurred on the II and NH applied sheet material, while spring-back behavior occurred on the TH applied material.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3