Wear properties of WC–Co and WC–CoCr coatings applied by HVOF technique on different steel substrates

Author:

Ozkavak Hatice Varol1,Sahin Serife,Sarac Mehmet Fahri,Alkan Zehra

Affiliation:

1. Department of Mechanical and Metal Technology, Technical Sciences Vocational School Isparta University of Applied Sciences, Isparta , 32260, Turkey

Abstract

Abstract Low alloy and stainless steel are the most used types of iron-based materials world wide. Their use against in machine element work, reclamation, corrosion and wear resistance are still challenging. To overcome this problem, many steel alloys are coated with cermet coatings to protect the parts from wear and corrosion. In the present study, WC-Co and WC-CoCr coatings were applied by means of a high velocity oxy-fuel (HVOF) technique on AISI 304, AISI 1040, and AISI 4340 steel alloys used as substrates. The aim was to investigate surface properties and wear resistance of the coatings and to determine their relationship with the type of coating and substrate. In accordance with this purpose, hardness and thickness of the coatings were measured, sliding wear tests were performed, scanning electron microscope (SEM) images and X-ray diffractions (XRD) were taken, surface roughness and friction coefficients were determined. The results showed that the WC-CoCr coatings had higher hardness and lower thickness than the WC-Co coatings. Maximum hardness was obtained in the WC-CoCr coating applied to AISI 4340 steel, which was also the hardest alloy among those studied. After wear resistance tests, it was revealed that the wear resistance of the WC-CoCr coatings was better than that of the WC-Co coatings for each steel substrate. During the coating, the new phases resulting from the decomposition of the WC phase in the WC-CoCr coatings contributed more to wear resistance than those of the WC-Co coatings. A lower friction coefficient and lower surface roughness of the WC-CoCr coatings during wear were obtained, resulting in higher wear resistance. A WC-CoCr coating on AISI 4340 alloy which has the highest hardness, lowest surface roughness and lowest friction coefficient resulted in the highest wear resistance among all types studied.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3