Wear and corrosion behavior of Mg-based alloy reinforced with TiC and ZrC particles

Author:

Odabasi Hülya Kaftelen1,Odabasi Akın

Affiliation:

1. Department of Airframe and Powerplant School of Civil Aviation Firat University, Elazig , Turkey

Abstract

Abstract In this contribution, particle sizes of TiC (13 and 93 μm) and volume fractions of ZrC (5 and 10 vol.-%) with respect to reinforcement particles were varied to investigate the effects on the microstructure, hardness, density, wear and corrosion properties of AZ91 Mg matrix alloy. Experimental results revealed that the hardness, density and sliding wear performance of AZ91 alloy were markedly improved by the addition of carbide particles. Predominant wear and corrosion mechanisms were identified considering the size and volume fraction of the carbides. The composite sample comprising fine TiC particles (13 μm) exhibited the highest wear resistance at the same volume fraction as the coarse particles. Moreover, coarse ZrC particles with a low volume fraction (5 vol.-%) provided an enhanced wear resistance beyond that of the 10 vol.-% ZrC particles. Considering all the investigated composites, the corrosion resistance of the composites deteriorated with the increasing volume fraction and size of the carbide particles. Electrochemical measurements of the 0,5M NaCl solution revealed that increasing carbide particle size and volume fraction leads to lower corrosion resistance due to the formation of more cathodic areas which are preferred sites for the initiation of pitting corrosion.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3