Laser surface treatment of S235JRC carbon steel with Co2B nanocrystals

Author:

Simsek Tuncay1,Baris Mustafa2,Akkurt Adnan3

Affiliation:

1. Department of Physics Engineering , Hacettepe University, Ankara , Turkey

2. Department of Technology Development , Eti Maden Works General Management, Ankara , Turkey

3. Department of Industrial Design Engineering , Gazi University, Ankara , Turkey

Abstract

Abstract In this study, Co2B nanocrystals, which were synthesized in a planetary type mill by using the mechanochemical method, were pre-coated on the surface of S235JRC low carbon steel substrates, and then the surfaces were clad using a CO2 laser. In the experiments, laser scan speed was kept constant and laser power was specified as the variable parameter. The microstructure and phases of the coatings were investigated by using X-ray diffractometry, scanning electron microscopy, and optical microscopy. The mechanical properties of the coatings were characterized using micro-hardness, ball-on-disc wear, and scratch testing. The thickness of the coatings depending on the laser power was measured in the range 35–71 μm. The hardness and the wear resistance of the coatings were approximately 3 times higher compared to the base metal due to FeN0.0760, Fe15.1C, FeCo, and B2C5N2 phases of the coatings. The most durable coatings against wear were obtained at 174 W and 220 W laser powers.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3