Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization

Author:

Hoseinpur Arman12,Bezanaj Malihe Mohammadi2,Khaki Jalil Vahdati2

Affiliation:

1. Energy Storage Department , Sun-Air Research Institute (SARI), Ferdowsi University of Mashhad, Mashhad , I.R. Iran

2. Department of Materials Engineering , School of Engineering, Ferdowsi University of Mashhad, Mashhad , I.R. Iran

Abstract

Abstract This research introduces the mechanosynthesis process for CaMoO4 nanoparticles by using MoO3 and CaO as initial reactants. An empirical model was developed to describe the kinetics of the reaction. X-ray diffraction was used at each step of the milling to evaluate the developed model. The experimental data and the results from the model are in good agreement. The synthesized powders in this research were characterized using X-ray diffraction, electron microscopy, dynamic laser scattering, and photoluminescence spectroscopy techniques. Photoluminescence characterizations revealed that the synthesized CaMoO4 generated two photoluminescence emissions, at 377 nm (violet) and 515 nm (green). It was also observed that further milling of the synthesized powders changed the photoluminescence properties of the product. After 12 h of milling, the synthesized CaMoO4 generated a novel photoluminescence emission at 564 nm. The results of this research indicate that mechanical milling can be employed to control the photoluminescent properties of CaMoO4.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3