Affiliation:
1. aCollege of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, P. R. China
2. bEngineering Research Center for Magnesium Alloys of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, P. R. China
3. cCollege of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, P. R. China
Abstract
AbstractIn petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg3Zn3Y2, and Mg3Zn6Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg3Zn3Y2 phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg3Zn6Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day−1 in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献