Towards Sustainable Timber Construction Through the Application of Wood-Wood Connections

Author:

Weinand Y.1

Affiliation:

1. Professor and Director of the Laboratory for Timber Constructions (IBOIS), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland;

Abstract

<p>This paper introduces a series of sustainable timber construction using wood-wood connections, which are driven from environmental requirements. These constructions are based on geometries like origami and free-form instead of standard structural elements. In addition, to predict the structural behaviour, the simplified numerical methods for accurately modelling are used. The aim of these case studies is to better explore the value of wood-wood connections as inheritance of ancient culture and extend research on their integration into design processes. Through the design, manufacturing and assembly stage, the connections are investigated as a driver for architectural forms. The utilisation of these innovative connections with minimised metal connectors ensures the rapid, precise and simple assembly process. With in-depth study and innovation of the ancient wood-wood connections, experience in prefabricated timber structure not only offers new geometrical opportunities, but also expands the understanding of integration of ancient and modern cultures.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3