Digitalization of bridge inventory via automated generation of BIM models

Author:

Hajdin Rade1,Rakic Lazar1,Diederich Holger1,Richter Rico2,Hildebrand Justus2,Schulz Sebastian2,Döllner Jürgen2,Bednorz Jennifer3

Affiliation:

1. Infrastructure Management Consultants GmbH, Zurich, Switzerland

2. University of Potsdam, Digital Engineering Faculty, Hasso Plattner Institute, Potsdam, Germany

3. Federal Highway Research Institute {BASt}, Bergisch Gladbach, Germany

Abstract

<p>The construction of building information modeling (BIM} models for infrastructure is becoming increasingly prevalent, as it facilitates current asset management practices. Existing bridges are particularly challenging to model due to their complex geometry and missing information. Given the recent advancements in 3D surveying and artificial intelligence, new possibilities emerge for the generation of BIM models. This paper presents a novel, modular framework for an automated construction of as-is bridge BIM models from point clouds of existing bridges. Bridge element datasets were provided to train neural network. Trained neural network can identify bridge elements, which are further processed using geometric algorithms into surface and solid bridge elements. This result can be additionally enriched with information from existing databases. The final BIM models are exported in the standardized, open Industry Foundation Classes (IFC} format.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

Reference28 articles.

1. Federal Ministry for Digital and Transport (BMDV). Master Plan BIM Federal Highways (Masterplan BIM Bundesfernstra�en). [Internet]. 2021. [Accessed on 2023 August15]. Available via: https://bmdv.bund.de/SharedDocs/DE/Anla ge/StB/bim-rd-masterplan-bundesfernstrassen.pdf?  blob=publication File

2. Sacks R, Eastman C, Lee G, Teicholz P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. 3rd ed. Hoboken: John Wiley & Sons; 2018.

3. Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A. Point Clouds: Lidar versus 3D Vision. Photogrammetric Engineering & Remote Sensing. 2010; 76(10): 1123-1134.

4. Richter R, Dollner J. Concepts and techniques for integration, analysis and visualization of massive 3D point clouds. Computers, Environment and Urban Systems. 2013; 45:114-124.

5. Qi C, Yi L, Su H, Guibas LJ. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems (NIPS). 2017; 5099-5108.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3