Dealing with the peculiarities of the structural system identification of cable-stayed bridges by observability techniques

Author:

Lozano Galant Jose Antonio1,Nogal Maria2,Castillo Enrique3,Turmo José4ORCID

Affiliation:

1. University of Castilla-La Mancha, Ciudad Real, Spain

2. Trinity College, Dublin, Ireland

3. University of Cantabria, Santander, Spain

4. Universitat Politècnica de Catalunya, BarcelonaTECH, Barcelona, Spain

Abstract

<p>Traditionally, the structural response of a bridge is modelled by simplistic physics-based models in which the mechanical and geometrical properties are assumed as known. Nevertheless, this is not the case in most actual structures where the values of the actual properties are unknown due to uncertainties in the materials, in the construction methods or in the stress state. In some cases, a calibration of the computer models using monitoring information of the actual structure is required to improve the accuracy of the predicted structural response. To carry out this task Structural System Identification (SSI) methods can be used.</p><p>Recently, the authors proposed a promising static SSI method based on observability techniques. This method addressed the problems appearing when unknown parameters are assumed into the stiffness matrix of a structure. The observability method was efficiently applied to deal with simple structures, such as single and multiple span beams. Nevertheless, the presented works did not address the peculiarities appearing in complex structures with different load-bearing elements, such as cable-stayed bridges.</p><p>To fill this gap, this paper proposes the first application of observability techniques to deal with the SSI of cable-stayed bridges. This work enables the definition of the set of deflections and rotations which should be measured on site to identify a certain set of unknown mechanical properties in the deck, the pylon and the stay cables. A set of academic examples, of growing complexity, are used to explain the role that the inclination and cracking of the load-bearing elements of a cable-stayed bridge plays in the SSI by observability techniques. The results obtained in these academic structures are validated by more complex models of real cable-stayed bridges.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3