Automated Crack Detection Method Based on Deep Learning and 3D Reconstruction for Concrete Bridges

Author:

Sun Tao1,Deng Lu2,Cao Ran2,Wang Wei2

Affiliation:

1. College of Civil Engineering, Hunan University, Changsha, Hunan Province, China

2. College of Civil Engineering, Hunan University, Changsha, Hunan Province, China; Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, China Hunan University, Changsha, China

Abstract

<p>Automated image-based bridge crack detection, as a promising technique, can be used to overcome the limitations of human visual inspection. However, results from current image-based methods are generally localized and lack 3D geometric information, which makes it difficult for structural assessment. To solve this issue, a crack detection method that combines deep learning and 3D reconstruction is proposed in this paper. Firstly, a 2D feature-based approach is developed to extract keyframes from the video adaptively. Secondly, a segmentation network is implemented to conduct pixel-level crack segmentation. Finally, image-based 3D reconstruction and crack mapping are used to create the 3D structure model with crack semantics. A field experiment is also carried out on an in-service concrete bridge for validation and discussion of the proposed method. The 3D model created by the proposed method can significantly improve the crack inspection of concrete bridges.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3