Pixel-level Road Crack Detection and Segmentation Based on Deep Learning

Author:

Deng Lu1,Zhang An1,Cao Ran1

Affiliation:

1. Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China

Abstract

<p>This paper proposed an integrated framework for detecting and segmenting road cracks in complex backgrounds. Based on the latest real-time object detection algorithm, YOLOv5l6, a modified U-Net embedded Bottleneck and Attention mechanism modules was developed to segment crack pixels from the detected crack regions. Validation of the proposed approach was conducted based on a total of 150 images, which were taken from different backgrounds, angles, and distances. Based on the computation, the results derived from the YOLOv5l6-based crack detection had a mean average precision of 92%, and the mean intersection of the union of the modified U-Net was 87%, which is at least 11% higher than the original U-Net model. The results showed the integrated approach could be a potential basis for an automated road-condition evaluation scheme for road operation and maintenance.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3