A deployable tensegrity footbridge: static design and optimization

Author:

Feron Jonas1,Mengeot Pierre1,Vandenbergh Thomas1,Latteur Pierre2

Affiliation:

1. BESIX, Brussels, Belgium

2. Université catholique de Louvain, Louvain-La-Neuve, Belgium

Abstract

<p>Tensegrity describes systems in which bars in compression seem to float inside cables in tension. This concept has inspired artists and designers for more than 60 years, however nowadays very few civil structures are built across the world. Although tensegrity structures seem visually light, there still remains a lack of rigorous and quantitative proofs about their structural efficiency in particular in terms of self-weight and stiffness. This article presents a 60m span tensegrity footbridge in steel composed of adapted simplex modules that contain one more cable than the classic simplex modules. The influence of this choice on the structural performances of the footbridge are here detailed. Eventually, the tensegrity footbridge is heavier and less stiff than traditional trusses but it is an aesthetic solution which offers the remarkable ability to deploy.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3