Shear Tests on RC Beams without Stirrups under Uniformly Distributed Load

Author:

Beck Alexander1,Kaufmann Walter1,Konradi Daniel2

Affiliation:

1. Institute of Structural Engineering, ETH Zurich, Switzerland

2. B+S AG, Bern, Switzerland

Abstract

<p>Despite hundreds of theoretical and experimental investigations carried out over the past decades, still no generally accepted, mechanically based model for the shear behaviour of structural concrete members without transverse reinforcement exists. The available theoretical models rely on limited experimental substantiation since the vast majority of the tests to date have been conducted on small, simply supported beams under point loads, which do not appropriately reflect real structures. Nevertheless, code provisions for shear design in structural concrete based on these theoretical models are used for the design of large structures under complex loading conditions. A comparison of experimental results with theoretical models concerning the shear strength of RC members without transverse reinforcement indeed reveals discrepancies between experimental and theoretical failure loads, and a lack of experimental data particularly for large specimens under distributed load. Therefore, two large-scale shear tests on simply supported, uniformly loaded beams without stirrups have been conducted to extend the experimental basis. This paper presents the results of these two experiments and compares them with various theoretical models and code provisions for shear in structural concrete. The failure loads evaluated with the theoretical models are in good accordance with the experimental results</p><p>– they are within a range of 20 % – but at the same time not conservative. The shear strengths determined from code provisions showed a rather big scatter and partially exceeded the experimental failure loads as well.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3