Convolutional Neural Network for Ground Coffee Particle Size Classification

Author:

Putra Dimas Zaki Alkani,Rifai Achmad Pratama

Abstract

Indonesia is the fourth largest coffee-producing country in the world. The popularity of coffee is increasing due to people's curiosity about the origin of coffee, from harvest to the hot cup of coffee on their table. This coffee culture drives innovators to develop coffee processing technology. Currently, there are tens of different coffee brewing methods available, each with their own unique flavor characteristics. The particle size of coffee beans is the basis for brewing coffee using specific methods. Identifying the particle size and calibrating tools to grind coffee requires special skills, expertise, experience, and a time-consuming process. Therefore, this study aims to develop a tool to classify the particle size of ground coffee based on computer vision. The object of this research is ground coffee with various particle sizes, which are acquired through imagery and will be classified using Convolutional Neural Network to provide recommendations for brewing coffee according to the particle size of the ground coffee. To build the classification model, the architectures were trained by full learning and transfer learning using VGG-19, MobileNet, and InceptionV3. The results showed that the classification model using the Convolutional Neural Network using the cellphone camera dataset achieved an accuracy value of 0.80. Meanwhile, with the microscope dataset, the model's accuracy only reached 0.58. Therefore, the classification model using the cellphone dataset is feasible to be implemented to determine the particle size.  

Publisher

Institut Pertanian Bogor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3