Author:
Salmayenti Resti,Hidayat Rahmat,Pramudia Aris
Abstract
Artificial neural network (ANN) is widely used for modelling in environmental science including climate, especially in rainfall prediction. Current knowledge has used several predictors consisting of historical rainfall data and El Niño Southern Oscillation (ENSO). However, rainfall variability of Indonesian is not only driven by ENSO, but Indian Ocean Dipole (IOD) could also influence variability of rainfall. Here, we proposed to use Dipole Mode Index (DMI) as index of IOD as complementary for ENSO. We found that rainfall variability in region with a monsoonal pattern has a strong correlation with ENSO and DMI. This strong correlation occurred during June-November, but a weak correlation was found for region with rainfall’s equatorial pattern. Based on statistical criteria, our model has R<sup>2</sup> 0.59 to 0.82, and RMSE 0.04-0.09 for monsoonal region. This finding revealed that our model is suitable to be applied in monsoonal region. In addition, ANN based model likely shows a low accuracy when it uses for long period prediction.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献