Response Modeling with Nonrandom Marketing-Mix Variables

Author:

Manchanda Puneet1,Rossi Peter E.1,Chintagunta Pradeep K.1

Affiliation:

1. University of Chicago

Abstract

Sales response models are widely used as the basis for optimizing the marketing mix. Response models condition on the observed marketing-mix variables and focus on the specification of the distribution of observed sales given marketing-mix activities. The models usually fail to recognize that the levels of the marketing-mix variables are often chosen with at least partial knowledge of the response parameters in the conditional model. This means that contrary to standard assumptions, the marginal distribution of the marketing-mix variables is not independent of response parameters. The authors expand on the standard conditional model to include a model for the determination of the marketing-mix variables. They apply this modeling approach to the problem of gauging the effectiveness of sales calls (details) to induce greater prescribing of drugs by individual physicians. They do not assume a priori that details are set optimally, but instead they infer the extent to which sales force managers have knowledge of responsiveness, and they use this knowledge to set the level of sales force contact. The authors find that their modeling approach improves the precision of the physician-specific response parameters significantly. They also find that physicians are not detailed optimally; high-volume physicians are detailed to a greater extent than low-volume physicians without regard to responsiveness to detailing. It appears that unresponsive but high-volume physicians are detailed the most. Finally, the authors illustrate how their approach provides a general framework.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 263 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3