Abstract
Broiler chickens grow rapidly, and their nutrient requirements change daily. However, broilers are fed three to five diet phases, meaning nutrients are under or oversupplied throughout production. Increasing diet phases improves production efficiency as there is less time in the production cycle that nutrients are in under or over-supply. Nevertheless, the process of administering four or more diets is costly and often impractical. New technologies are now available to blend feed to match the daily nutrient requirements of broilers. Thus, the aim of this review is to evaluate previous studies measuring the impact of increasing feed phases on nutrient utilisation and growth performance, and review recent studies taking this concept to the extreme; precision nutrition - feeding a new diet for each day of the production cycle. This review will also discuss how modern precision feeding technologies have been utilised and the potential that new technologies may bring to the poultry industry. The development of a precision nutrition regime which targets daily requirements by blending dietary components on farm is anticipated to improve the efficiency of production, reduce production cost and therefore improve sustainability of the industry. There is also potential for precision feeding technology along with precision nutrition strategies to deliver a plethora of other management and economic benefits. These include increased fluidity to cope with sudden environmental or market changes, and the ability to alter diets on a farm by farm level in a large, integrated operation. Thus, the future possibilities and practical implications for such technologies to generate a paradigm shift in feed formulation within the poultry industry to meet the rising demand for animal protein is also discussed.
Publisher
Asian Australasian Association of Animal Production Societies
Subject
General Veterinary,Genetics,Animal Science and Zoology,Physiology,Food Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献