β-Nicotinamide mononucleotide improves chilled ram sperm quality in vitro by reducing oxidative stress damage

Author:

Zhu ZhendongORCID,Zhao HaolongORCID,Yang QitaiORCID,Li YajingORCID,Wang RuYuanORCID,Adetunji Adedeji OlufemiORCID,Min LingjiangORCID

Abstract

Objective: The present study aimed to investigate the effect of β-nicotinamide mononucleotide (NMN) supplementation on ram sperm quality during storage at 4°C in vitro.Methods: Tris-citric acid-glucose solution containing different doses of NMN (0, 30, 60, 90, and 120 μM) was used to dilute semen collected from rams and it was stored at 4°C. Sperm motility, plasma membrane integrity as well as acrosome integrity were evaluated at 0, 24, and 48 h time points after storage at 4°C. In addition, sperm mitochondrial activity, lipid peroxidation (LPO), malondialdehyde (MDA) content, reactive oxygen species (ROS) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and apoptosis were measured at 48 h time point after storage at 4°C.Results: Results demonstrate that the values obtained for sperm motility, acrosome integrity, and plasma membrane integrity in the NMN treatments were significantly higher than control (p<0.05). The addition of 60 μM NMN significantly improved ram sperm mitochondrial activity and reduced LPO, MDA content, and ROS content compared to control (p<0.05). Interestingly, sperm GSH content and SOD activity for the 60 μM NMN treatment were much higher than those observed for control. NMN treatment also decreased the level of Cleaved-Caspase 3, Cleaved-Caspase 9, and Bax while increasing Bcl-2 level in sperm at 48 h time point after storage at 4°C.Conclusion: Ram sperm quality can be maintained during storage at 4°C with the addition of NMN at 60 μM to the semen extender. NMN also reduces oxidative stress and apoptosis. Overall, these findings suggest that NMN is efficient in improving the viability of ram sperm during storage at 4°C in vitro.

Funder

Young Innovation Team Plan Program of Higher Education of Shandong Province Project

Technology System of Modern Agricultural Industry in Shandong Province

Qingdao Agricultural University

Publisher

Asian Australasian Association of Animal Production Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3