Molecular signaling of pruritus induced by endothelin-1 in mice

Author:

Liang Jiexian1,Kawamata Tomoyuki2,Ji Wenjin3

Affiliation:

1. Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China

2. Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan

3. Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China

Abstract

Endothelin-1 (ET-1) has recently been identified to evoke pruritus/itching sensation in both humans and animals. It is most likely that the signaling is through the specific G-protein-coupled ETA and ETB receptors, but the downstream signaling mediators for ET-1 remain elusive. In the present study, we examined the potential involvement of several distinct signaling molecules in ET-1-induced pruritus in a murine model. We applied an in vivo pruritus model in C57BL/6J mice by injecting ET-1 intradermally into the scruff, and recording the number of scratching bouts within 30 min after injection. Then specific antagonists/inhibitors for distinct signaling molecules, including cell-surface ETA and ETB receptors, histamine receptor type 1 (H1 receptor), protein kinases A (PKA) and C (PKC), phospholipase C (PLC) or adenylyl cyclase (AC), were co-injected with ET-1. The results showed that ET-1 induced a vigorous scratching response in mice in a dose-dependent manner. This response was further enhanced by a specific antagonist for ETB receptor, BQ-788, reduced by a specific antagonist for ETA receptor, BQ-123, and not affected by mepyramine, the specific inhibitor for H1 receptor. In addition, the scratching response was significantly reduced by inhibitors for PKC and AC, but was significantly enhanced by PLC inhibitor, while PKA inhibitors showed no effects in the ET-1-induced scratching response. Our data suggested that ET-1 may signal through the ETA receptor, AC and PKC pathway to induce pruritus sensation, while ETB receptor and PLC may antagonize the pruritus evoked by ET-1. These results may provide a basis for the future development of antipruritic therapy.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3