Distinct effects of intravascular and extravascular angiotensin II on cerebrovascular circulation of newborn pigs

Author:

Knecht Kenneth R1,Leffler Charles W12

Affiliation:

1. Department of Pediatrics

2. Department of Physiology, Laboratory for Research in Neonatal Physiology, University of Tennessee Center for the Health Sciences, Memphis, TN, 38163, USA

Abstract

Angiotensin II (AngII) is important in regulation of vascular resistance and control of blood flow among organs and tissues. The effect of AngII on the cerebral microvasculature may be mediated or altered by endothelial-derived signals. The aim of this study was to test the hypothesis that blood AngII dilates neonatal pial arterioles via an endothelial-dependent mechanism but brain AngII can constrict pial arterioles by activating smooth muscle AT1 receptors. Studies used anesthetized newborn pigs with surgically implanted closed cranial windows. AngII was given either by infusion into the carotid artery ipsilateral to the cranial window or topically. Intracarotid infusion of AngII dilated pial arterioles. The dilation was blocked by systemic administration of the AT1-receptor antagonist, losartan, but unaffected by topical losartan. Topical AngII also caused dilation, but this dilation was converted to constriction by topical losartan. In piglets pretreated with the angiotensin-converting enzyme (ACE) inhibitor, enalapril, topical AngII constricted, rather than dilated, pial arterioles. In enalapril-treated piglets, light/dye endothelial injury blocked dilation to intracarotid AngII but did not affect constriction to topical AngII. Either indomethacin or l-nitroarginine methyl ester blocked the dilation to intraluminal AngII, but neither affected constriction to topical AngII. Chromium mesoporphyrin, that inhibits heme oxygenase, did not affect responses to either topical or intravascular AngII. These data are consistent with the hypotheses that: (a) circulating AngII dilates pial arterioles via endothelial AT1 receptor-derived relaxing factors, notably prostanoids and nitric oxide; (b) direct AT1 receptor activation on the brain side of the blood–brain barrier by AngII causes AT1 receptor-mediated constriction that can mask underlying AT1 receptor-independent dilation when ACE is inhibited. Clinical manipulation of the renin–angiotensin system will have disparate actions on cerebral circulation depending on the functional integrity of the intima and ACE.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3