Paradoxical increase in liver ketogenesis during long-term insulin-induced hypoglycemia in diabetic rats

Author:

Schiavon Fabiana P M1,Gazola Vilma A F G1,Furlan Maria M D P1,Barrena Helenton C2,Bazotte Roberto B2

Affiliation:

1. Department of Physiological Sciences

2. Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, 87020-900, Brazil

Abstract

It is well established that insulin inhibits liver ketogenesis. However, during insulin-induced hypoglycemia (IIH) the release of counterregulatory hormones could overcome the insulin effect on ketogenesis. To clarify this question the ketogenic activity in livers from alloxan-diabetic rats submitted to long-term IIH was investigated. Moreover, liver glycogenolysis, gluconeogensis, ureagenesis and the production of l-lactate were measured, and its correlation with blood levels of ketone bodies (KB), l-lactate, glucose, urea and ammonia was investigated. For this purpose, overnight fasted alloxan-diabetic rats (DBT group) were compared with control non-diabetic rats (NDBT group). Long-term IIH was obtained with an intraperitoneal injection of Detemir insulin (1 U/kg), and KB, glucose, l-lactate, ammonia and urea were evaluated at 0, 2, 4, 6, 8 or 10 h after insulin injection. Because IIH was well established two hours after insulin injection this time was used for liver perfusion experiments. The administration of Detemir insulin decreased ( P < 0.05) blood KB and glucose levels, but there was an increase in the blood l-lactate levels and a rebound increase in blood KB during the glucose recovery phase of IIH. In agreement with these results, the capacity to produce KB from octanoate was increased in the livers of DBT rats. Moreover, the elevated blood l-lactate levels in DBT rats could be attributed to the higher ( P < 0.05) glycogenolysis when part of glucose from glycogenolysis enters glycolysis, producing l-lactate. In contrast, except glycerol, gluconeogenesis was negligible in the livers of DBT rats. Therefore, during long-term IIH the higher liver ketogenic capacity of DBT rats increased the risk of hyperketonemia. In addition, in spite of the fact that the insulin injection decreased blood KB, there was a risk of worsening lactic acidosis.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3