Diagnosis of lymph node metastasis in uterine cervical cancer: usefulness of computer-aided diagnosis with comprehensive evaluation of MR images and clinical findings

Author:

Kim Mi-hyun1,Kim Jeong Kon1,Lee Youngjoo2,Park Bum-Woo1,Lee Chang Kyung1,Kim Namkug1,Cho Gyunggoo3,Choi Hyuck Jae1,Cho Kyoung-Sik1

Affiliation:

1. Department of Radiology, Research Institute of Radiology, Medical Imaging Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul

2. Department of Industrial Engineering, Seoul National University, Seoul

3. MRI team, Korea Basic Science Institute, Chungbuk, Korea

Abstract

Background Lymph node (LN) status is an important parameter for determining the treatment strategy and for predicting the prognosis for patients with uterine cervical cancer. Computer-aided diagnosis (CAD) can be feasible for differentiating metastatic from non-metastatic lymph nodes in patients with uterine cervical cancer Purpose To determine the usefulness of CAD that comprehensively evaluates MR images and clinical findings for detecting LN metastasis in uterine cervical cancer. Material and Methods In 680 LNs from 143 patients who underwent radical hysterectomy for uterine cervical cancer, the CAD system using the Bayesian classifier estimated the probability of metastasis based on MR findings and clinical findings. We compared the diagnostic accuracy for detecting metastatic LNs in the CAD and MR findings. Results Metastasis was diagnosed in 70 (12%) LNs from 34 (24%) patients. The area under ROC curves of CAD (0.924) was greater than those of the mean ADC (0.854), minimum ADC (0.849), maximum ADC (0.827), short-axis diameter (0.856) and long-axis diameter (0.753) ( P < 0.05). The specificity and accuracy of the CAD (86%, 86%) were greater than those of the mean ADC (77%, 77%), maximum ADC (77%, 77%), minimum ADC (68%, 70%), and short-axis diameter (65%, 67%) ( P < 0.05). Conclusion CAD system can improve the diagnostic performance of MR for detecting metastatic LNs in uterine cervical cancer.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3