Association of angiopoietin-like protein 3 with hepatic triglyceride lipase and lipoprotein lipase activities in human plasma

Author:

Nakajima K1234,Kobayashi J1,Mabuchi H1,Nakano T2,Tokita Y2,Nagamine T2,Imamura S5,Ai M3,Otokozawa S3,Schaefer E F3

Affiliation:

1. Department of Lipidology and Division of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Ishikawa

2. School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan

3. Lipid Metabolism Laboratory, Jean Mayer United States Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA

4. Department of Molecular Biosciences, University of California Davis, Davis, CA, USA

5. Diagnostics Research and Development Department, Diagnostic Division, Asahi Kasei Pharma Corporation, Izunokuni City, Shizuoka, Japan

Abstract

Background The relationship between plasma angiopoietin-like protein 3 (ANGPTL3), and lipoprotein lipase (LPL) activity and hepatic triglyceride lipase (HTGL) activity has not been investigated in the metabolism of remnant lipoproteins (RLPs) and high-density lipoprotein (HDL) in human plasma. Methods ANGPTL3, LPL activity, HTGL activity, RLP-C and RLP-TG and small, dense LDL-cholesterol (sd LDL-C) were measured in 20 overweight and obese subjects in the fasting and postprandial states. Results Plasma TG, RLP-C, RLP-TG and sd LDL-C were inversely correlated with LPL activity both in the fasting and postprandial states, but not correlated with HTGL activity and ANGPTL3. However, plasma HDL-C was positively correlated with LPL activity both in the fasting and postprandial states, while inversely correlated with HTGL activity. ANGPTL3 was inversely correlated with HTGL activity both in the fasting and postprandial states, but not correlated with LPL activity. Conclusion HTGL plays a major role in HDL metabolism, but not RLP metabolism. These findings suggest that ANGPTL3 is strongly associated with the inhibition of HTGL activity and regulates HDL metabolism, but not associated with the inhibition of LPL activity for the metabolism of RLPs in human plasma.

Publisher

SAGE Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3