Measurement of lipoprotein particle sizes using dynamic light scattering

Author:

Sakurai Toshihiro1,Trirongjitmoah Suchin2,Nishibata Yuka1,Namita Takeshi2,Tsuji Masahiro3,Hui Shu-Ping4,Jin Shigeki1,Shimizu Koichi2,Chiba Hitoshi1

Affiliation:

1. Faculty of Health Sciences

2. Graduate School of Information Science and Technology, Hokkaido University

3. Division of Internal Medicine, Health Sciences University of Hokkaido Hospital, Sapporo

4. Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan

Abstract

Background A simple method for the measurement of LDL particle sizes is needed in clinical laboratories because a predominance of small, dense LDL (sd LDL) has been associated with coronary heart disease. We applied dynamic light scattering (DLS) to measure lipoprotein particle sizes, with special reference to sd LDL. Methods Human serum lipoproteins isolated by a combination of ultracentrifugation and gel chromatography, or by sequential ultracentrifugation, were measured for particle size using DLS. Results The sizes of polystyrene beads, with diameters of 21 and 28 nm according to the manufacturer, were determined by DLS as 19.3 ± 1.0 nm (mean ± SD, n = 11) and 25.5 ± 1.0 nm, respectively. The coefficients of variation for the 21 and 28 nm beads were 5.1% and 3.8% (within-run, n = 11), and 2.9% and 6.2% (between-run, n = 3), respectively. The lipoprotein sizes determined by DLS for lipoprotein fractions isolated by chromatography were consistent with the elution profile. Whole serum, four isolated lipoprotein fractions (CM + VLDL + IDL, large LDL, sd LDL and HDL) and a non-lipoprotein fraction isolated by sequential ultracentrifugation were determined by DLS to be 13.1 ± 7.5, 37.0 ± 5.2, 21.5 ± 0.8, 20.3 ± 1.1, 8.6 ± 1.5 and 8.8 ± 2.0 nm, respectively. Conclusions The proposed DLS method can differentiate the sizes of isolated lipoprotein particles, including large LDL and sd LDL, and might be used in clinical laboratories in combination with convenient lipoprotein separation.

Publisher

SAGE Publications

Subject

Clinical Biochemistry,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3