An intelligent emergency response system: preliminary development and testing of automated fall detection

Author:

Lee Tracy1,Mihailidis Alex1

Affiliation:

1. Intelligent Assistive Technology and Systems Laboratory, Department of Occupational Therapy, University of Toronto, Canada

Abstract

We have designed an intelligent emergency response system to detect falls in the home. It uses image-based sensors. A pilot study was conducted using 21 subjects to evaluate the efficacy and performance of the fall-detection component of the system. Trials were conducted in a mock-up bedroom setting, with a bed, a chair and other typical bedroom furnishings. A small digital videocamera was installed in the ceiling at a height of approximately 2.6 m. The digital camera covered an area of approximately 5.0 m × 3.8 m. The subjects were asked to assume a series of postures, namely walking/standing, sitting/lying down in an inactive zone, stooping, lying down in a 'stretched' position, and lying down in a 'tucked' position. These five scenarios were repeated three times by each subject in a random order. These test positions totalled 315 tasks with 126 fall-simulated tasks and 189 non-fall-simulated tasks. The system detected a fall on 77% of occasions and missed a fall on 23%. False alarms occurred on only 5% of occasions. The results encourage the potential use of a vision-based system to provide safety and security in the homes of the elderly.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Fall Detection with Thermal Camera;Communications in Computer and Information Science;2024

2. Biomedical Radar System for Real-Time Contactless Fall Detection and Indoor Localization;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2023-12

3. Enhancing Elderly Fall Detection through IoT-Enabled Smart Flooring and AI for Independent Living Sustainability;Sustainability;2023-11-07

4. Design of Fall Detection System Based on Infrared -Visible Camera and Internet of Things Technology;2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE);2023-08-25

5. Human Action Recognition-Based IoT Services for Emergency Response Management;Machine Learning and Knowledge Extraction;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3