Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice

Author:

Hufeldt M R123,Nielsen D S3,Vogensen F K3,Midtvedt T4,Hansen A K1

Affiliation:

1. Department of Veterinary Disease Biology, Faculty of Life Sciences, Centre for Applied Laboratory Animal Research, University of Copenhagen, 1870 Frederiksberg C, Denmark

2. Centre for Applied Laboratory Animal Research, Scanbur A/S, 2690 Karlslunde, Denmark

3. Department of Food Science, Faculty of Life Sciences, University of Copenhagen, 1958 Frederiksberg C, Denmark

4. Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm 17177, Sweden

Abstract

The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown that the composition of the GM is related to genetics to a certain extent. We hypothesized that the GM similarity in a group of mice born by mothers not being sisters would be lower than that in a group born by mothers being sisters. The lower similarity could lead to clustering of the GM of mice born by non-sisters according to their mothers, while such clustering would not be visible if the mothers were sisters. We used 16S rRNA gene (V3 region) polymerase chain reaction-derived amplicon profiling by denaturing gradient gel electrophoresis (DGGE) to study the GM composition in caecum samples of 33 eight-week-old C57BL/6Sca mice from a breeding set-up with dam breeders that were sisters, as well as caecum samples of 35 eight-week-old C57BL/6Sca mice from a breeding set-up with dam breeders that were not sisters. Principal component analysis revealed a significant difference between the litters from the breeding set-up with dam breeders that were not sisters, whereas no significant difference between the litters based on the breeding set-up with dam breeders that were sisters was observed. The results obtained indicate that the systematic variation in the GM of inbred mice can be reduced by increasing the family relatedness of the breeding pairs.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3