Epinephrine-dependent control of glucose metabolism in white adipose tissue: the role of α- and β-adrenergic signalling

Author:

Cahova Monika1,Palenickova Eliska1,Papackova Zuzana1,Dankova Helena1,Skop Vojtech2,Kazdova Ludmila1

Affiliation:

1. Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 4, 14021

2. Institute for Chemical Technology, Prague, 16628, Czech Republic

Abstract

Epinephrine controls many important and sometimes opposite processes. This pleiotropic effect is achieved via coupling to different receptor/effector systems. In epididymal white adipose tissue (EWAT) of Wistar rats, we showed that epinephrine stimulated protein kinase B (PKB) phosphorylation on Ser473. Epinephrine further increased the glucose incorporation into glyceride-glycerol without decreasing glucose availability for other metabolic pathways (i.e. lactate production). Wortmannin (phosphatidylinositol 3-kinase inhibitor) treatment significantly decreased glucose incorporation into glyceride-glycerol and elevated the epinephrine-induced release of free fatty acids (FFA) from the adipose tissue without any change in the intensity of lipolysis measured as glycerol release. Using specific cyclic adenosine monophosphate (cAMP) analogs we demonstrated that cAMP–protein kinase A (PKA) signalling resulted in a strong PKB dephosphorylation and significantly lowered the glucose availability in EWAT. Specific activation of the Epac (exchange protein activated by cAMP)-dependent pathway had only a moderately negative effect on PKB phosphorylation and glucose metabolism. In contrast, α1 agonist methoxamine increased PKB phosphorylation and lactate production. This effect of methoxamine was additive to the effect of insulin and it was abolished by wortmannin treatment. In EWAT of spontaneously dyslipidemic hereditary hypertriglyceridemic (HHTg) rats, we demonstrated significantly lower epinephrine-induced glucose utilization but higher sensitivity to its lipolytic effect. We conclude that in EWAT, epinephrine controls two opposite processes (FFA release and FFA retention) via two different effector systems. The impairment of α1-dependent, epinephrine-stimulated, glycolysis-dependent FFA esterification may contribute to the establishment of dyslipidemia in insulin resistance.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3