Contribution of the paraventricular nucleus in autonomic adjustments to heat stress

Author:

Leite Laura H R1,Zheng Hong2,Coimbra Cândido C3,Patel Kaushik P2

Affiliation:

1. Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil

2. Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850, Omaha, NE 68198-5850, USA

3. Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil

Abstract

We assessed the contribution of the paraventricular nucleus (PVN) in the heat stress-mediated changes in sympathetic nerve activity and blood flow redistribution from the core to the skin surface. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), and body and tail temperatures were recorded in anesthetized rats after bilateral microinjection of cerebrospinal fluid (CSF), lidocaine or NG-monomethyl-L-arginine (l-NMMA) into the PVN during heat stress. Heat stress was induced by a graded increase in the temperature of a heating pad for 30 min. Heat stimulus after blockade of the PVN with lidocaine resulted in a blunted RSNA response (ΔRSNA: 117.6 ± 17.0% versus 11.3 ± 7.3%), as well as blunted MAP and HR (ΔMAP: 22 ± 2 versus −0.04 ± 7.2 mmHg; ΔHR: 93.4 ± 9.3 versus 43.4 ± 18.8 bpm). Body temperature threshold for tail vasodilation was unaffected by lidocaine treatment. The increase in RSNA, MAP and HR due to heat stress in l-NMMA-treated rats reached similar levels as CSF-treated control rats. However, a higher body temperature threshold for tail vasodilation was observed after l-NMMA injection (37.3 ± 0.1 versus 37.8 ± 0.2°C). In conclusion, an intact PVN contributes to an increase in renal sympathetic activity provoked by heat stress, resulting in cardiovascular adjustments that influence core blood redistribution to the periphery. Furthermore, during heat stress, the effect of the PVN on cutaneous vasodilation is dependent on a nitric oxide mechanism.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3