Biodistribution and antitumoral effect of long-circulating and pH-sensitive liposomal cisplatin administered in Ehrlich tumor-bearing mice

Author:

Araújo José Geraldo Coimbra1,Mota Luciene das Graças2,Leite Elaine Amaral13,Maroni Laís de Carvalho4,Wainstein Alberto Julius Alves5,Coelho Luiz Gonzaga Vaz5,Savassi-Rocha Paulo Roberto5,Pereira Márcio Tadeu6,de Carvalho Andréa Teixeira4,Cardoso Valbert Nascimento2,De Oliveira Mônica Cristina1

Affiliation:

1. Departamento de Produtos Farmacêuticos

2. Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte

3. Departametno de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua da Glória, 187, 39100-000 Diamantina

4. Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ, Av. Augusto de Lima, 1715, 30190-002 Belo Horizonte

5. Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100 Belo Horizonte

6. Centro de Desenvolvimento de Tecnologia Nuclear (CDTN)/Comissão Nacional de Energia Nuclear (CNEN), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil

Abstract

Cisplatin (CDDP) is one of the most active cytotoxic agents and has been widely used in the treatment of peritoneal carcinomatosis by the intraperitoneal (i.p.) route. However, CDDP, a low-molecular-weight compound, is rapidly absorbed by the capillaries in the i.p. serosa and transferred to the bloodstream, inducing the appearance of systemic side-effects, such as nephrotoxicity. Furthermore, the i.p. CDDP chemotherapy is limited to patients whose residual tumor nodules are less than 0.5 cm in diameter after surgical debulking. The failure of i.p. therapy is attributed to the poor penetration of CDDP into larger tumors. One strategy to improve drug delivery in the peritoneal region and reduce toxicity is the use of drug delivery systems. The objective of the present work was to evaluate the biodistribution and antitumoral effect of long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP), as compared with free CDDP, after their i.p. administration in Ehrlich ascitic tumor-bearing mice. After administering a 6 mg/kg single i.p. bolus injection of either free CDDP or SpHL-CDDP, ascitic fluid (AF), blood and organs (kidneys, liver, spleen and lungs) were collected and analyzed for CDDP content. The area under the CDDP concentration–time curve (AUC) obtained for AF and blood after SpHL-CDDP administration was 3.3-fold larger and 1.3-fold lower, respectively, when compared with free CDDP treatment, thus indicating its high retention within the peritoneal cavity. The determination of the ratio between AUC in each tissue and that in blood (Kp) showed a lower accumulation of CDDP in kidneys after SpHL-CDDP treatment. The SpHL-CDDP treatment demonstrated a significant uptake by the liver and spleen. SpHL-CDDP treatment led to a higher survival rate of mice with initial or disseminated peritoneal carcinomatosis than CDDP treatment. These results indicate that SpHL-CDDP may be useful for i.p. chemotherapy due to their greater concentration in the peritoneal cavity.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3